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Strong effect of dispersal network structure on
ecological dynamics
Matthew D. Holland1 & Alan Hastings1

A central question in ecology with great importance for manage-
ment, conservation and biological control is how changing con-
nectivity affects the persistence and dynamics of interacting
species. Researchers in many disciplines have used large systems
of coupled oscillators to model the behaviour of a diverse array of
fluctuating systems in nature1–4. In the well-studied regime of
weak coupling, synchronization is favoured by increases in coup-
ling strength and large-scale network structures (for example
‘small worlds’) that produce short cuts and clustering5–9. Here
we show that, by contrast, randomizing the structure of dispersal
networks in a model of predators and prey tends to favour asyn-
chrony and prolonged transient dynamics, with resulting effects
on the amplitudes of population fluctuations. Our results focus on
synchronization and dynamics of clusters in models, and on time-
scales, more appropriate for ecology, namely smaller systems with
strong interactions outside the weak-coupling regime, rather than
the better-studied cases of large, weakly coupled systems. In these
smaller systems, the dynamics of transients and the effects of
changes in connectivity can be well understood using a set of
methods including numerical reconstructions of phase dynamics,
examinations of cluster formation and the consideration of
important aspects of cyclic dynamics, such as amplitude.

Our study of the role of network structure on ecological dynamics
considers exploiter–victim interactions10–14 in networks that are rela-
tively small and heterogeneous, and in which the importance of the
amplitude of cycles means that results from weak coupling do not
apply. We use explicit models of ecological dynamics, in which issues
concerning both the phases and the amplitudes of oscillators are
important, as opposed to generalmodels based onphase oscillators5,15.
The systems of conservation or ecological interest are typically those
with strong connections16, where boom-and-bust cycles can bring
interacting populations close to extinction. Previous work suggests
the importance of spatial structure and connectivity for reduction of
cycle amplitude and increased persistence in both models10–12,17,18 and
laboratory systems19. More recently, great interest has arisen in the
practical application of connectivity in a conservation context and in
biological control14, with all the heterogeneities present in natural and
managed systems having a vital role16,20–22. However, most current
theoretical understanding comes from models with very regular con-
nections among patches, by contrast with the heterogeneity in natural
systems that are far from regular22–24. We focus on heterogeneities,
specifically in network structure, and on the formationof clusters, that
is, groups of spatial locations with synchronous dynamics.

We present results for ten-patch systems, which are intermediate in
size between typical studies of small systems (two to four patches17,25)
and large lattice systems (hundreds to thousands of patches4,12). We
choose this sizemainly for tractability, andalsobecausemanymanaged
systems have a relatively small number of connected sites, and larger
systems behave similarly. We use regular lattices of degree four (each

node, which represents a habitat patch, is connected to four nearest
neighbours) to begin modelling dispersal networks. To investigate the
effect of irregular patterns of dispersal among patches, we also consider
networks that have been randomized by ‘rewiring’ one ormore edges26

(removing a connection between one pair of patches and replacing it
with a connection between a different pair), as well as networks in
which all edges (connections) have been assigned at random. Sample
networks are shown in Fig. 1. The local and dispersal dynamics of the
system are modelled as follows:

dhi
dt

~hi(1{hhi){
pihi
1zhi

zdh
Xn

j~1

Aijhj ð1Þ

dpi
dt

~
wpihi
1zhi

{gpizdp
Xn

j~1

Aijpj ð2Þ

This is a non-dimensional and spatially structured form of the well-
known Rosenzweig–MacArthur predator–prey model27, with h repre-
senting prey density and p representing predator density, interacting in
n discrete habitat patches25. The local dynamics are determined by
three parameters: w (prey-to-predator conversion rate), h (strength
of prey self-regulation) and g (predator mortality rate). Dispersal
among patches is governed by the dispersal rates dh (prey) and dp
(predators) and the matrix A.

The system of equations (1) and (2) can produce a variety of spatial
dynamics. Solutions range from global synchrony (all patches display
identical fluctuations through time; we will refer to this as the one-
cluster solution) to global asynchrony (all patches have unique tra-
jectories at any given time; n-cluster solutions), as well as solutions
with between two and n2 1 clusters of synchronous patches (Fig. 2
and Supplementary Figs 1–6). It is important to note that (even for
the same parameter values) there may be several k-cluster solutions
with different characteristics for 2# k# n. In particular, continuous
measures of asynchrony such as correlation of densities among
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Figure 1 | Sample dispersal networks for systems with ten patches. All
networks have an average degree of four, and dispersal is bidirectional. a, A
ring lattice, referred to as a ‘regular’ network. b, A rewired ring lattice starts
as a ring lattice and is rewired by replacingm edges at random. Herem5 2.
c, A randomnetwork is produced by choosing nk/2 edges at random from all
combinations of vertices (i, j) such that i, j. All dispersal networks used
here were connected (every node can be reached by traversing one or more
edges from every other node).
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patches in different clusters may vary among k-cluster solutions and
over time for a single k-cluster solution. Thus, even ‘globally asyn-
chronous’ n-cluster solutions may display considerable synchrony
and, hence, larger amplitudes at various times during the solution.
Furthermore, large-k-cluster classes can contain complex transient
solutions resembling chaotic saddles, as well as asymptotic solutions
displaying chaotic, quasi-periodic or periodic behaviour.

We find consistent and striking differences between dynamics with
regular and irregular topologies for a broad range of underlying local
dynamics. Looking at the distribution of cluster number through time
in an ensemble of simulations reveals a substantial amount of informa-
tion about the transient and asymptotic dynamics of these systems
(Fig. 3 and Supplementary Figs 7–11). Increasing randomization of
thenetworkdramatically reduces theproportionof solutionswith small
to moderate numbers of clusters over ecologically relevant timescales.

For systems with heterogeneous dispersal networks, the temporal
dynamics of k-cluster solutions suggest that transient dynamics are
probably far more important than asymptotic dynamics on ecological
timescales (Fig. 3). There are consequences for fluctuation amplitude
and extinction risk of predators and prey, as is further revealed by
manipulating both the local and the dispersal dynamics of the system.
Varying predator efficiency, w, is one way to move the system from
low- to high-amplitude fluctuations. Becausewe aremainly interested
in spatial persistence mechanisms, regional amplitude is a reasonable
proxy for extinction risk in the context of a deterministic model (see
Methods). For relatively low predator efficiencies, the asymptotic
dynamics of all patch configurations are globally synchronous
(Fig. 4a) and transients are short (Fig. 4b). At higher predator effi-
ciencies, intermediate k-cluster solutions become stable, and asymp-
totic amplitudes level off near two orders of magnitude. This effect
holds even at very high predator efficiencies, where single-patch sys-
tems fluctuate over five ormore orders ofmagnitude and local extinc-
tion is extremely likely. The transient dynamics of these solutions have
even lower median amplitudes, closer to one order of magnitude.
Systems with irregular network structures spend much more time
on these lower-amplitude transient solutions (Fig. 4b).
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Figure 2 | Total predator amplitude (summed over all patches) as a
function of time for cluster solutions. Local dynamics are characterized by
strong prey density dependence (h5 0.3), predator mortality rates (g5 1)
comparable to prey birth rates, moderate predator dispersal (dp5 227) and
slower prey dispersal (dh5 229). a, b,Weak predation (w5 2.75) and regular
networks. c–f, Strong predation (w5 6) and rewired networks (m5 2). All
initial conditions and rewired networks were independently generated (see
Methods). Each panel is labelled with the asymptotic number of clusters (K)
observed in the simulation.
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Figure 3 | Distribution of cluster states as a function of time. We consider
systems with moderate dispersal rates (dh5 229, dp5 227) and ordered to
random dispersal networks. a, Regular lattice; b, m5 1; c, m5 2; d, m5 3;
e, random network. Regular networks converge to two- and six-cluster
solutions, whereas irregular networks produce more eight-, nine- and ten-
cluster solutions. Most of these large-k-cluster states are transient solutions.
Local dynamics correspond to strong predation (w5 5), strongly self-
regulating prey (h5 0.3) and predatormortality rates (g5 1) comparable to
prey birth rates. Each panel summarizes 100 independent simulations.
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Figure 4 | Predator amplitude and transient duration. a, c, e, Median total
predator amplitude during transient (triangles, solid lines) and asymptotic
(open circles, dashed lines) solution phases; b, d, f, mean fraction of time
spent in transient solutions. The black lines in a, c, and e are amplitudes of
globally synchronous solutions for the chosen parameter values: h5 0.3,
g5 1, dh5 229, dp5 227 (a, b); w5 5, h5 0.3, g5 1, dh5 229 (c, d), w5 5,
h5 0.3, g5 1, dp5 227 (e, f). Data points are jittered horizontally and
alternate markers omitted in c–e to improve readability. Each case uses at
least 150 independent simulations. Dark blue, regular lattice; green, m5 1;
red, m5 2; light blue, m5 3; pink, random network.
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Manipulating dispersal rates leads to more complex spatio-tem-
poral patterns. As predator dispersal is increased from a low value, we
go from long transients and low-amplitude asymptotic solutions to a
regime of higher amplitude asymptotic solutions preceded by lower-
amplitude transients, with transient durations decreasing at higher
movement rates (Fig. 4c, d). Very low values of prey dispersal pro-
duce shorter transients and low amplitudes in randomized networks
and long transients of high amplitude in highly ordered lattices
(log2(dh),210; Fig. 4e, f). Larger rates of prey movement yield
the now-familiar pattern of short transients leading to higher asymp-
totic amplitudes in ordered lattices, and longer transients of low
amplitude in more disordered networks (log2(dh).210, Fig. 4e, f).

Heterogeneous dispersal networks lead to dynamics with larger
numbers of clusters (Fig. 3), which are generally transient solutions
with considerable asynchrony and lower median amplitudes (Fig. 4)
than the asymptotic solutions observed for lattice dispersal networks.
There are some important caveats, however. Some transient solu-
tions appear to be chaotic saddles or quasi-periodic solutions in
which the median amplitude may not represent the dynamical
regime that actually determines persistence. These solutions are rela-
tively rare in our simulations, and occur most often for cases of
strong resonance (Fig. 4c) or for very high values of predator dis-
persal (Supplementary Figs 14, 15). The relevance of such cases will of
course depend on the details of the biological system being studied.

We demonstrate here that irregularities in connections among
different sites in ecological networks can have large effects on the
resulting dynamics. In particular, heterogeneous networks typically
have longer periods of asynchronous dynamics, leading typically to
lower amplitude fluctuations in population abundances; conse-
quently, these are irregularities that cannot be ignored. However,
decisions about the use of connectivity and corridors are being made
in ecological systems based for the most part on theory that does not
explicitly included heterogeneities16,28. Simultaneously, there is the
need to characterize complex multidimensional systems in ecology,
especially in the face of limited data. We show that for the kinds of
systems we consider, cluster size is a simple, yet powerful and inform-
ative, way of characterizing dynamics, which both has a relationship
to underlying network regularity and can help in understanding the
dynamics of transient solutions on ecological timescales.

METHODS SUMMARY
The system of equations (1) and (2) was integrated numerically using a method
appropriate for stiff equations. All simulations were initiated with pseudoran-
domly generated initial conditions, with all prey densities independently and
identically distributed (i.i.d.) and all predator densities i.i.d. among all patches.
For simulations using rewired or random networks, each simulation used an
independently generated network.
Windowed analyses of cluster solutions (Fig. 3, Supplementary Figs 7–11) and

amplitude (Figs 2, 4, Supplementary Figs 14, 15) were carried out on overlapping
windows of length 4!TT beginning at unit time intervals, where !TT is the mean
period of a predator–prey cycle in a given simulation, averaged over all patches.
Wedefined a k-cluster solution as a solution inwhich thenpatches in the system

could be assigned to k#n clusters of patches with identical dynamics. Clusters
were taken to be the unions of all intersecting pairs of synchronous patches.
Time series were partitioned into transient and asymptotic regimes by treating

predator–prey trajectories in individual patches as phase oscillators. We assumed
that the rate of phase evolutionwithin each patch would be constant when asymp-
totic dynamics had been reached. In fact,manyof the asymptotic solutions contain
periodic variation in the oscillator periods themselves. Thus, the transient phase of
dynamics was defined as the interval of time before all patches displayed constant
or periodic phase evolution. An automated algorithm (described inMethods) was
used to estimate this value from numerical solutions to equations (1) and (2).
Total predator amplitude (Figs 2, 4) was defined simply as

log10
max

Pn
i~1 pi

! "

min
Pn

i~1 pi
! "

over the time interval of interest, rather than as the greatest amplitude of any
particular cycle in the interval.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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22. Fortuna, M. A., Gómez-Rodriguez, C. & Bascompte, J. Spatial network structure
and amphibian persistence in stochastic environments. Proc. R. Soc. Lond. B 273,
1429–1434 (2006).

23. Hanski, I. & Ovaskainen, O. The metapopulation capacity of a fragmented
landscape. Nature 404, 755–758 (2000).

24. McIntire, E. J. B., Schultz, C. B. & Crone, E. E. Designing a network for butterfly
habitat restoration: where individuals, populations and landscapes interact. J.
Appl. Ecol. 44, 725–736 (2007).

25. Hastings, A. Transient dynamics and persistence of ecological systems. Ecol. Lett.
4, 215–220 (2001).

26. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks.
Nature 393, 440–442 (1998).

27. Rosenzweig, M. L. & MacArthur, R. H. Graphical representation and stability
conditions of predator-prey interactions. Am. Nat. 97, 209–223 (1963).

28. Hilty, J. A., Lidicker, W. Z. & Merenlender, A. M. Corridor Ecology: The Science and
Practice of Linking Landscapes for Biodiversity Conservation (Island Press, 2006).

Supplementary Information is linked to the online version of the paper at
www.nature.com/nature.

Acknowledgements We thank M. Holyoak for comments on an earlier version of
the manuscript and D. Wysham for discussions. M.D.H. was funded by a
Quantitative Environmental and Integrative Biology grant to A.H. and M. Holyoak
from the National Science Foundation.

Author Contributions M.D.H. wrote custom software, ran simulations and
analyzed data. M.D.H. and A.H. designed the study and wrote the paper.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. Correspondence and requests for materials should be
addressed to M.D.H. (mdholland@ucdavis.edu).

NATURE LETTERS

3
 ©2008 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/nature
http://www.nature.com/nature
http://www.nature.com/reprints
mailto:mdholland@ucdavis.edu


METHODS
Numerical integration. Numerical integration was carried out using the back-
ward-differentiation formula method in CVODE (ref. 29). Prey initial condi-
tions were i.i.d. with log10(hi(0)) uniformly distributed on the interval
(25, 11 log10ĥh) and predator initial conditions were i.i.d. with log10(pi(0))
uniformly distributed on the interval (25, 11 log10p̂p), where ĥh5 g/(w2 g)
and p̂p5 (11 ĥh)(12 hĥh).
Dispersal networks.We used three types of dispersal networks (Fig. 1), all with
an average number of connections per vertex (degree) of four. A ring lattice of
degree four (Fig. 1a) is obtained by placing n points on a ring and connecting
each to its four nearest neighbours. A rewired ring lattice (Fig. 1b) is obtained by
deleting m randomly chosen edges from a ring lattice and replacing them at
random. Because our networks are small, we chose random edges from the set
of edges not included in the original lattice. We generated random graphs of
degree four (Fig. 1c) by choosing 2n edges at random from the n(n2 1)/2
possible undirected edges. All networks were connected (every vertex can be
reached by traversing one or more edges from every other vertex).
Pseudorandom number generation. Pseudorandom numbers were generated
using the Mersenne twister algorithm.
Cluster identification.Dynamics in pairs of patches were compared by calculat-
ing the linear correlation coefficient, rij, of prey time series in all pairs of patches.
A pair of patches was taken to have identical dynamics, and thus assigned to the
same cluster, if rij. 0.999.
Non-dimensionalization. The system of equations (1) and (2) was obtained by
non-dimensionalizing a spatially explicit version of the Rosenzweig–
MacArthur27 equations

dHi

dt
~Hi 1{

Hi

K

# $
{

aPiHi

bzHi
zDH

Xn

j~1

AijHj

dPi
dt

~
caPiHi

bzHi
{mPizDP

Xn

j~1

AijPj

by making the substitutions hi5Hi/b, pi5 aPi/rb and t5 rt and defining the
parameters h5 b/K, w5 ca/r, g5m/r, dh5DH/r and dp5DP/r. The matrix
A5M –E represents the allowed dispersal transitions, whereM is the adjacency
matrix of the dispersal network, meaning thatMij5 1 if individuals are allowed
to move from patch j to patch i. E represents emigration, and is thus a diagonal
matrix with entries Eii~

Pn
j~1 Mji .

Phase analysis of transient duration. Phase dynamics of solutions to the pred-
ator–prey model in equations (1) and (2) were reconstructed by treating the
projections of the solution into the planes hi3 pi as phase plane trajectories of
limit cycle oscillators. The time between subsequent crossings from above of the
line segment connecting the nontrivial equilibrium at (ĥh, p̂p) to the origin was
taken to represent one cycle, or 2p radians of phase evolution. We defined
Zi5 f(Ti)2 f (Ti,a), where Ti5Ti,1, Ti,2,…, Ti,j,…, Ti,N is the time series of N
cycle periods in the ith patch, f is a low-pass filter and Ti,a is the series of periods
in the ith patch for the last aN observations ofTi. Thus, the elementsZi should be
close to zero when asymptotic dynamics have been reached. In practice, it is
necessary to choose a positive threshold, e, and declare that asymptotic dynamics
have been reached by time k if jZij, e for all j. k. Errors can result when the
asymptotic dynamics of one or more patches are poorly approximated by a
simple limit cycle, but if these deviations are themselves periodic at high fre-
quencies, they will be removed by the filter f. Most commonly, the one or two
lowest amplitude patches will have sufficiently slow variation in period to cause
errors. Therefore, in addition to filtering the Ti to obtain Zi, we estimated the
transient duration as the time until at least eight of ten patches had reached the
stage of asymptotic behaviour by the above criterion, with e5 0.1 and a5 0.167.
The filter f was chosen to be a (Blackman) windowed sinc filter30 with 151

points and a cut-off frequency of 0.05 per sample. This filter has a transition band
from 0.04 (0-dB amplitude gain) to 0.07 per sample (274-dB amplitude gain).
In practice, this means that large-period deviations occurring on timescales of 14
or more cycles may remain in the Zi, causing us to incorrectly conclude that
asymptotic dynamics are never reached. The solution shown in Supplementary
Figs 1i, 2i, 3i is an example of such a case.

29. Cohen, S. D. & Hindmarsh, A. C. CVODE, a stiff/nonstiff ODE solver in C.
Computers Phys. 10, 138–143 (1996).

30. Smith, S. W. The Scientist and Engineer’s Guide to Digital Signal Processing
(California Technical Publishing, 1997).
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